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Abstract

The Rational Speech Act (RSA) model, which proposes
that probabilistic speakers and listeners recursively reason
about each other’s mental states to communicate, has
been successful in explaining many pragmatic reasoning
phenomena. However, several theoretical questions remain
unanswered. First, will such a pragmatic speaker—listener
pair always outperform their literal counterparts who do
not reason about each others mental states? Second, how
does communication effectiveness change with the number of
recursions? Third, when exact inference cannot be performed,
how does limiting the computational resources of the speaker
and listener affect these results? We systematically analyzed
the RSA model and found that in Monte Carlo simulations
pragmatic listeners and speakers always outperform their
literal counterparts and the expected accuracy increases as
the number of recursions increases. Furthermore, limiting
the computation resources of the speaker and listener so they
sample only the top k& most likely options leads to higher
expected accuracy. We verified these results on a previously
collected natural language dataset in color reference games.
The current work supplements the existing RSA literature and
could guide future modeling work.
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Introduction

The Rational Speech Act (RSA) model has successfully
explained a number of psycholinguistic findings in pragmatic
reasoning (Goodman & Stuhlmiiller, 2013; Goodman &
Frank, 2016; Frank, 2016; Kao, Bergen, & Goodman,
2014). This model proposes that probabilistic speakers and
probabilistic listeners recursively reason about each other’s
mental states to infer the meaning of utterances and generate
utterances in response. One simple example demonstrating
how RSA works is a reference game scenario (Frank &
Goodman, 2012) in which the speaker and the listener can
both see three faces (Figure 1): one with hat and glasses
(HG), one with only glasses (G), and one with neither (N);
one of these is the speaker’s “friend”. The speaker says “my
friend has glasses”, presupposing that there is a single friend.
The listeners, who know that the only alternative utterance
was “my friend has a hat”, share the intuition that the sentence
“my friend has glasses” refers to G and not HG or N (Stiller,
Goodman, & Frank, 2011). The RSA model provides a nice
explanation for that intuition, as it proposes that the listener
reasons about the speaker’s mental state, and realizes that if
the speaker meant to refer to the one with hat and glasses
(HG), he/she could have said “my friend has a hat” to avoid
any ambiguity. The fact that he/she did not say so implied
that HG was not the referent.

Despite the success of the RSA model in explaining
a variety of pragmatic reasoning phenomena, several
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Figure 1: Pragmatic reasoning in a reference game. The
speaker says my friend has glasses. The listener needs to
guess which one is the speaker’s friend. Adapted from
Goodman and Frank (2016).

theoretical questions remain unanswered. In this paper we
address three relevant questions:

(1) Will pragmatic listeners and pragmatic speakers
always communicate better than literal listeners and
literal speakers? If so, what is the reason underlying
their advantage? Despite broad empirical evidence showing
that people tend to behave more like pragmatic listeners and
speakers, it’s not clear whether we should always expect that
recursive reasoning will provide an improvement.

(2) How does the number of recursions affect the accuracy
of agents using the RSA model? In previous modeling work
using the RSA model, the depth of recursions was usually
set to two (but see Bergen, Goodman, and Levy (2012) and
Degen, Franke, and Jager (2013)). However, if we expect
a general advantage of applying pragmatic reasoning in
communication, we should expect more recursions to result in
even higher performance in reference games. Although some
studies have shown that deep recursion may not be realistic
in reference games (Degen & Franke, 2012), more recent
evidence has shown deeper recursion in some participants
(Franke & Degen, 2016), consistent with work on economic
games where higher recursion depth in human Theory of
Mind is sometimes found (Camerer, Ho, & Chong, 2004). In
the current paper we extend previous work that has studied
deeper recursion on small meaning matrices to large and
realistic meaning matrices (Franke & Degen, 2016).

(3) How do computational constraints on exact calculation
of the probabilities in the RSA model affect its
performance? Prior work on RSA has focused on the
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setting where the context set is small, such that it is possible
to normalize the posterior probability over all items in the
candidate set. However, if we include all possible world states
in the candidate set for the listener model and all possible
utterances in the candidate set for the speaker model, it would
be impossible, or at least unrealistic, to operate on the entire
candidate set when performing normalization. Therefore, we
explore the effect on accuracy of using only the k£ most likely
candidates when performing the calculations at each step.

In this paper, we first briefly review the formalization of
a classic RSA model. Then we show that we can simplify
the model under certain assumptions and derive a concise
expression of the expected accuracy in a reference game given
any listener and speaker models. Using this formula, we
run Monte Carlo simulations on random meaning functions
and present our results that address the three questions
mentioned above. The key finding is that as listeners and
speakers perform more recursions of inferring each other’s
mental states, their joint performance gets better. We also
verify that these conclusions hold on a dataset of human
utterances collected in a color reference game (Monroe,
Hawkins, Goodman, & Potts, 2017). Finally, we discuss the
implications of our findings.

Models

A classic RSA model (Goodman & Frank, 2016) usually
starts from a literal listener:

L0<t|u7M)°<M(u7t)P(t)v (D

where ¢ is a possible world in a set of all possible worlds C,
u is an utterance drawn from a set of possible utterances U, P
is a prior over worlds, and M = M (u,t) is a meaning function
that takes the value 1 if u is true of ¢, otherwise 0.

A pragmatic speaker would infer a literal listener model
from the meaning function M and then build his/her own
model accordingly:

S1 (M‘[,M) o ea(log(l‘()([‘”ﬂM))*K(“))_ (2)

Here, x(u) is a real-valued cost function on utterances, and
o € [0,%) is an inverse temperature parameter controlling
how rational the speaker is. Specifically, if o is large, the
speaker will choose the utterance with highest likelihood,
whereas when o is small, the speaker tends to choose
utterances more randomly and thus suboptimally. A
pragmatic listener in turn builds his/her own listener model
L, based on the pragmatic speaker model S;:

L (t|u, M) o< Sy (ult, M)P(t) ©)

For the sake of simplicity, we assume the prior over worlds is
uniform, so equation (1) becomes:

Lo(t|u,M) o< M(u,t). “)

We also assume the cost function k(u) is a constant function
and oo = 1, which amounts to a scenario in which the speaker
and the listener use a matching-probability strategy.

blue 1 1 blue 1 1
cyan 1 0 cyan % 0
(a) Meaning matrix M. (b) Literal speaker Sy.

blue 1 Z blue 1 1
cyan 1 0 cyan % 0

(c) Pragmatic listener L. (d) Pragmatic speaker S,.

Figure 2: Simulating pragmatic reasoning in a reference game
with a basic RSA model.

Under these assumptions, we can simplify the models to:

Lo(t[u, M) o< M (u, 1) (5)
S](M|I,M)°<LQ(I‘M,M) (6)
Lo (]u, M) o< S (ut, M) %

Similarly, a speaker model can also be derived from the
meaning function:

So(ult,M) o< M(u,r) (8)
Ly (t]u, M) o< So(ult, M) )
3¢, M) o= Ly (1}, M) (10)

In effect, each step in the recursion simply normalizes
the M across the world states, or across the utterances. To
illustrate how this simulates pragmatic reasoning, we present
a concrete example. In the meaning matrix in Figure 2a, we
see that the word “blue” applies to both of the two colors
and the word “cyan” only applies to the left one. Therefore,
a literal speaker would be equally likely to use “blue” and
“cyan” to refer to the left color. Formally, we can normalize
the columns of the meaning matrix (Equation 8) to get the
literal speaker model Sy (Figure 2b). A pragmatic listener L,
builds a mental representation of the literal speaker model Sy
and uses Bayes’ rule to interpret the speaker’s utterance. For
example, if the listener hears the word “blue”, the chance that
“blue” is produced for the left color is only half of the chance
that it is produced for the right color. Therefore, a pragmatic
listener would assign a probability of % to the left color and %
to the right color. Formally, the pragmatic listener normalizes
the rows of the literal speaker model Sy to obtain its own
model L; (Figure 2c). Finally, a pragmatic speaker mentally
simulates the pragmatic listener L; and chooses utterances
accordingly, i.e., it normalizes the columns of L; (Equation
10) to get its own model S, (Figure 2d).

As shown in Figure 2, the listener model and the speaker
model change after each iteration. For a 2x2 meaning matrix,
the ultimate converged matrix can be explicitly derived as:

N s 1=
M=[ggl— 00, ]
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blue 0 1
cyan 1 0

Figure 3: The converged listener model and speaker model
after many recursions using the RSA model.

when ad # 0 or bc # 0.

This is because r}glolo L,= r}glolo S, and both the rows and the
columns sum up to 1. To explicitly derive p as a function of
a,b,c,d, it can be shown that the ratio % (or % if be = 0)
remains unchanged under row and column normalizations, so
we have

p? _ad
(1-p)?  bc’

 Vad
b= Jad+/be

Using this formula, we know that after many iterations, the
pragmatic listener and speaker in Figure 2 will both converge
to the matrix in Figure 3, resulting in a one-to-one mapping
between utterances and worlds, i.e., a better communication
protocol. This implies that the recursions in the RSA model
discourage distributions containing non-specific utterances.
Does the observation that RSA optimizes the performance
of a listener-speaker pair in the 2x2 case generalize to
n-dimensional meaning matrices? To answer this question,
we run some simulations using both random and naturalistic
meaning matrices. We first give a mathematical formulation
of the problem. Starting from a meaning function,
represented by a binary matrix M € RP*4, we define two
operators. The first is “row normalization”, ¢; € RP*9 —
RP*4 which is used to derive the listener model L. The
second is “column normalization” 0g € RP*? — RP*4, which
is used to derive the speaker model S. According to the basic
RSA model, which assumes the prior over worlds is uniform
and the cost function of each utterance is constant, we have:

thus
(11)

Lo = ¢r(M)

So = ¢s(M)

L,= q)L(Sn*l) (12
Sp=0s(Ln—1)

This alternating normalization is also known as the
Sinkhorn-Knopp algorithm (Sinkhorn & Knopp, 1967),
which is shown to converge if and only if A has a positive
diagonal, i.e. there exists a permutation ¢ of {1,...,n} such
that A; , > O for all i. This is a very reasonable assumption for
a meaning matrix, since it implies that every world state has
at least one utterance which refers to it and every utterance
refers to at least one possible world state.

Under this framework, we can derive the expected accuracy
of a listener in a reference game given any meaning matrix M

.S'0 L,
.
51 1 l‘_1 :
[ I ]
r====
1 1
102 L

Figure 4: Evaluating the joint performance by a listener
model L,_; and a speaker model S,,, where n is the number
of recursions.

and level of recursion n. This derivation allows us to examine
whether the joint performance by a listener—speaker pair is
better at higher levels n. We simulate the reference game in
the following way: 1. Sample a true world w from a uniform
distribution. 2. Given w, sample an utterance u from the
speaker S. 3. Given u, sample a world prediction w from
the listener L. The accuracy of the pair is the probability that
W =w, i.e., the listener model makes a correct response.
Formally, given a world w;, the speaker § picks an
utterance u, according to the probability distribution Sye;,
where e; = [0~-~1~-0}T € RY, and e;’s jth entry is 1.
As illustrated by the blue squares with dashed borders in
Figure 4, we pair up a listener with its derived pragmatic
speaker and compute their joint performance. In other words,
we calculate the performance of pair (S,,L,—1). So the
listener L guesses a ¢ according to the listener model given
the utterance the speaker used: LT ;S,e; € RY. The accuracy
is the probability that the listener guesses the world wj, i.e.,

T TyT T
[Ln—lsnej]j =e€; Ln—lsnej+ = (Ln—ISn)jj

As the prior over the world wy,---,w, is uniform, the
expected accuracy, a, can be written as:
1 1
a= 5((L£71Sn)ll ot (L Sn)gg) = ;tf(LLlSn)

Using this formula, we first explore how the number of
recursions affects the expected accuracy.

Simulations on Random Matrices

We first present the results of simulations using random
meaning functions. We generate meaning matrices {0, 1}7*P
for p = {10,20,30,40,50} and each entry independently
containing 1 with probability 0.1. For each matrix size,! we
randomly generate 200 matrices and compute the expected
accuracy of (S,,L,_1), forn=1,2,...,50. The first thing we
find is that regardless of the size of the meaning matrices,

I'The number of rows and the number of columns do not have to
be equal. Here we just use square matrices for simplicity, and the
results are qualitatively the same for non-square matrices.
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Figure 5: Joint reference game accuracy of (L,_1,S,).

more recursions always results in higher performance
(Figure 5). Secondly, although we simulate up to 50
recursions, the gain of doing recursive pragmatic reasoning
is only salient in the first few recursions, especially when the
meaning matrix size is large. This is promising for cognitive
plausibility, since we don’t expect people to perform very
many recursions (due to limited working memory capacity)
and it is important that the benefit of pragmatic reasoning
emerges with a small number of recursions.

Effect of Sampling Next we examine how sampling affects
expected accuracy. When the speaker has a large vocabulary,
it is no longer plausible to enumerate all the utterances and do
column-wise normalization. Instead, he/she may select only
the top k most likely utterances and discard the rest for further
computation, i.e., set the probability of the others to be 0. The
subsequent normalization is then applied only to the vector of
the remaining non-zero probabilities. More formally, for any
column a € R9*! a; > 0, we convert a; to a;, where:

- a;1{a;is among the top k elements in a}

a; = " " .
' Y.ja;1{a;is among the top k elements in a}

Similarly, the listener model can consider only the top &
most likely worlds and will set the probability of the rest
of the worlds to be zero. This process approximates the
expectation of another sampling-based approach in work
on approximate Bayesian cognition (Goodman, Tenenbaum,
Feldman, & Griffiths, 2008), i.e., agents sample a small set of
k elements from the full distribution to realize.

We examine our top-k normalization procedure in two
conditions, “speaker only” and “both”. In the “speaker only”
condition, only the speaker selects the top k utterances and
perform truncated column-wise normalization, whereas in the
“both” condition, both the speaker and the listener model
select the top k elements in their probability distribution and
perform this truncated normalization.

The results are shown in Figure 6. We find that in
the “both” condition, as k decreases, the expected accuracy
increases dramatically. When k£ = 1,2, with only the first
few iterations the accuracy rises rapidly. This is because
forcing both the listener model and the speaker model to
choose only the top few options allows them to quickly form a
one-to-one mapping between utterances and worlds. We also
found that, in general, having truncated normalization in both
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Figure 6: Expected accuracy of listener-speaker dyads when
both agents (left) or only the speaker (right) consider the k

most likely candidates.
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Figure 7: Entropy of listener-speaker dyads when both of
them consider only the k most likely candidates (left) or only
the speaker considers the k£ most likely candidates (right).

the listener model and the speaker model results in higher
joint performance. At first this may seem counter-intuitive,
since we naturally expect a larger sampling size to lead to
better reasoning. However, as shown here, when both the
speaker and the listener are aware of each other’s cognitive
constraints and the desire to keep only a small number of
possibilities in their individual mental model, it actually
helps the dyad to quickly converge to a convention that
approximates one-to-one (or few-to-few) mapping.

Supporting this, we found that more recursions reduces the
mean entropy of both the speaker model (Figure 7) and the
listener model (not plotted here). This explains the higher
accuracy associated with more recursions: at higher levels,
listeners and speakers reduce their uncertainty in each other’s
world-utterance mappings.

An interesting finding is that k = 2 leads to even
better accuracy than k = 1. To understand the underlying
mechanism, we examine how the number of non-zero
elements for the listener and speaker changes as a function
of k and number of recursions (Figure 8). We find that,
not surprisingly, choosing only the top 1 option quickly
reduces the number of non-zero elements to 50, which
means the speaker and the listener both form a one-to-one
mapping between worlds and utterances. However, it is
likely that their mappings are different, which will lower their
joint performance. Note that this top-k selection process is
irreversible, in the sense that once an element is set to zero,
it won’t become non-zero in later recursions. That explains
why top-1 accuracy is lower than the top-2 accuracy, as the

2762



listener speaker

]
53
=)

g
=)
=~

1]

TADIX+

=)
3

w
=)

(=2

20 40 60 80 0 20 40 60 80
N Recursions

Number of Non-Zero Probabilities
=
=]

Figure 8: Number of non-zero elements in the listener model
L; (left) and the speaker model S; (right) as a function of
sampling size k and number of recursions n.

top-2 sampling process allows more elements to be non-zero
at each iteration, thus allowing the speaker and listener to
coordinate through more recursions and jointly optimize their
models. Another way to interpret this result is that k = 2 may
strike a good balance between exploration and exploitation,
as found in previous game-theoretic work (Franke & Jiger,
2014). When £ is even larger, the benefit of being flexible is
canceled out by the cost of being less specific, as seen in the
low expected accuracies of models with large k (Figure 6).

Simulations on a Naturalistic Dataset

In the previous section we ran simulations on binary random
matrices. Next, we verify our results on a realistic meaning
matrix extracted from data collected in a color reference game
by Monroe et al. (2017). They paired Amazon Mechanical
Turkers into dyads, and one of the Turkers was assigned
the role of a speaker and the other was assigned a role of a
listener. The speaker could see a target color alongside two
distractors and needed to describe the color to the listener so
that the listener could identify the target correctly. We limit
our investigation to single-word utterances that appear at least
twice in this corpus, a total of 261 utterances. We also divide
colors on a continuous spectrum into 128 color categories.
We count the frequency of each unigram-color pair in the
corpus and obtained the co-occurrence matrix. We treat this
as our meaning matrix M € R?61>128_Note that this meaning
matrix is no longer binary, but integer-valued, containing the
information of the utterance prior and the world prior.”

We ran the same simulations on this realistic meaning
matrix and the results are shown in Figure 9. Consistent with
what we found in the simulations on random matrices, we can
see that the accuracy increases as the parameter k decreases.
Limiting k to be small (e.g., 1 or 2) results in a communication
protocol that achieves high accuracy.

A possible concern is that while more recursions allow the
listener and speaker to form a better communication protocol,
they may end up with a world-utterance mapping that is only
interpretable by themselves, and not sensible to other people.
In other words, more recursions may result in a very efficient

2Strictly, this is not a literal meaning matrix, but reflects
pragmatic use. However, treating it as a pragmatic speaker model
(e.g., S1) does not alter the qualitative results of the simulation.
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Figure 9: Expected accuracy calculated from a meaning
function, which is extracted from human data in a color
reference game (Monroe et al., 2017).

cyan 0.03 0 0 0 0.01
blue-green  0.02 0.01 O 0 0.01
blue-grey 0 0 0.01 O 0
blue-purple 0 0 0 0.01 O
bluish 0 0 0.01 0.01 0.02

(a) A submatrix of the original probabilistic speaker model Sy.

cyan 021 O 0 0 0
blue-green  0.08 0.26 0 0 0.03
blue-grey 0 0 053 O 0
blue-purple 0 0 0 027 0
bluish 0 0 0 0 0.36

(b) A submatrix of the converged probabilistic speaker model S,,.

Figure 10: Examples showing how probabilities in the
speaker model change from the original values to the ultimate
values in the converged matrix.

communication protocol that only works for this specific pair.
We argue that this won’t be the case, since the top k truncated
normalization procedure will guarantee that the support of L,
is a subset of the support of S,_1, i.e., recursive pragmatic
reasoning does not create new world-utterance associations,
but only changes the relative strength of existing associations.

In Figure 10, we show a submatrix of the original speaker
model and the corresponding submatrix of the converged
speaker model. Note that the normalization was still
performed over the entire matrix (all utterances and all
worlds). We can see that the original speaker model Sy
becomes more specific after it converges to S,. In particular,
in the original speaker model Sp, the non-zero probabilities
are very small, indicating that the distribution is spread over
many utterances. However, after a few iterations using the
RSA model, some utterances are assigned large probabilities
and thus dominate the distribution.
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Discussion

In this work, we systematically evaluate how expected
accuracy of a pragmatic listener-speaker dyad in a reference
game changes as a function of: (a) size of vocabulary
and world state space, (b) number of pragmatic reasoning
recursions and (c) number of candidates considered at
each iteration. We find that regardless of vocabulary size
and number of possible worlds, more pragmatic reasoning
recursions always lead to higher accuracy. This is explained
by reduction in entropy, and it is consistent with previous
theoretical work on game-theoretical pragmatics, which has
shown that for agents that maximize expected utility, in
each step of recursive iterated pragmatic reasoning, expected
communicative success is non-decreasing (Jager, 2011). Our
work confirms this point in the soft-utility-maximization
setting.  In addition, we find that considering only a
few candidates at each iteration in the recursion helps a
listener-speaker dyad play the reference task better.

Our work is closely related to multi-agent communication,
a topic that has recently received significant attention in the
machine learning community (Andreas, Dragan, & Klein,
2017; Havrylov & Titov, 2017). For instance, several
previous efforts have focused on training a speaker agent
that can describe a target image in natural or synthetic
language, or to enable a listener agent to identify the target
image (Andreas & Klein, 2016; Lazaridou, Peysakhovich, &
Baroni, 2017). Andreas and Klein trained a speaker model
to generate a context-sensitive caption for a target image in
a reference game. However, the speaker does not explicitly
model the listener model. In other words, their model used
only one round of recursion. According to our simulation,
more recursions is likely to yield better communication
protocols. Therefore, future work should explore whether
adding more recursions in such neural pragmatic speaker and
listener models would lead to performance improvements.

One of the limitations of the current work is that we assume
the speaker and the listener start from exactly the same
meaning matrix, which is a common practice in previous RSA
modeling work. However, in reality, a listener and speaker
might start from slightly different meaning functions. Future
work should examine how small mismatches between the
listener and speaker’s meaning functions might change the
conclusions derived in the current work.
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