

Problem
Scripting complex motion in a
distributed virtual world is
tedious and error-prone. A
centralized approach (one
script controlling many
objects) is simpler, but doesn't
leverage the ability to
distribute computation among
multiple clients.

What is needed
A library to abstract away the
burdensome details of motion
control while still allowing
customization of each object's
motion on the client.

Polling
A polling-based system with regular queries
and updates allows the user to painlessly
modify the properties of an object's motion in
response to events in the virtual world.
Sensible defaults
The library assumes reasonable default values
for most aspects of motion, so the user needs
to give less information. For example, gravity
assumes a downward acceleration of 9.8 m/s2,
unless the user specifies something different.
A strong supporting library
Behind the highly customizable core is a library
of ready-made functions that implement types
of motion anticipated to be common.

Client-side motion and physics scripting in distributed virtual worlds
Will Monroe
CURIS Summer 2011
Mentors: Philip Levis, Ewen Cheslack-Postava, Behram Mistree

function rollingVelFn(pres) {
 if(pres.velocity.length() < 0.004)
 return <0, 0, 0>;
 return pres.velocity -
 pres.velocity.normal() * 0.004;
}
for(var i in balls)
{
 // make balls bounce off each other
 balls[i].coll = new motion.Collision(
 balls[i],
 coll.TestSpheres(balls),
 coll.Bounce(0.8)
);
 // confine balls to within the table
 balls[i].bounds = new motion.Collision(
 balls[i],
 coll.TestBounds(
 TABLE_BOUNDS.max,
 TABLE_BOUNDS.min
),
 coll.Bounce(0.8)
);
 // make balls gradually slow and stop
 balls[i].friction = new motion.Velocity(
 balls[i],
 rollingVelFn
);
}

Challenges
● Reduce complexity for users
● Correct for network latency
● Properly handle decentralizationBilliards (Will Monroe)

Bubble Shooter (Emily Ye)

Hooks for custom callbacks
Allow the user to write her own routines to
build new types of motion on top of the basic
library functionality.
Send a snapshot of the world with messages
Store positions and velocities computed during
collision detection and send them with collision
notification messages, so the circumstances of
the collision can be reproduced after the
message has traveled across the network.
Filter out duplicate collisions
Compare the velocities in the message to locally
stored velocities, and if the local velocity has
already changed, ignore the message.

Implementation

Zombie Apocalypse (Jiwon Kim)

Sensitivity to polling rate
Optimize the polling system so slowdowns
caused by rendering of complex scenes or
collision detection among large numbers of
objects don't cause accuracy to degrade.

Multipresencing: centralize when possible
Adapt by interacting across the network only
when necessary, so hosting many objects on the
same client can improve performance.

Future improvement

axe

car
zombies

	Slide 1

